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Exact Analysis of a Lattice Gas on the 3-12 Lattice 
with Two- and Three-Site Interactions 
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Exact results are obtained for a lattice gas on the 3-12 lattice with two- and 
three-site interactions. By using a decoration transformation, we map the lattice 
gas into one on the honeycomb lattice with pure two-site interactions. This 
procedure permits us to draw exact results for the original 3-12 lattice gas. 
In particular, we obtain its exact two-phase boundary,  and confirm the fact 
that an experimentally observed anomaly in the critical behavior of the 
coexistence-curve diameter is present if, and only if, the three-site interactions 
are present. 
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1. I N T R O D U C T I O N  

In 1952 Lee and Yang (1) formulated the consideration of a lattice gas as a 
realization of liquid-gas transitions. This seemingly artificial formulation 
of a real gas has, however, proven to be extremely useful in explaining 
experimental observations. In a recent paper Goldstein et  aL (2) suggested 
that the experimentally observed anomaly of the critical behavior of the 
coexistence-curve diameter in real gases can be explained by the existence 
of three-site interactions. This suggestion has subsequently been verified by 
Wu and Wu, (3) who showed rigorously that the introduction of three-site 
interactions in a Kagom6 lattice gas indeed induces the observed anomaly. 
But in the Kagom6 lattice the two- and three-site interactions are not 
"separable" in the sense that they involve the same cluster of spins. It is 
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therefore desirable to further test the relevance of three-site interactions on 
the observed anomaly in systems with completely separable two- and three- 
site interactions. In this paper we take up this consideration. 

We consider the lattice gas on the 3-12 lattice shown in Fig. 1, where 
J and J '  are the (reduced) nearest-neighbor interactions, and J3 the 
(reduced) three-site interactions among three spins surrounding a triangle. 
Note that the J '  interactions are between sites belonging to different 
triangles, and are therefore completely separated from the three-site 
interactions J3. The grand partition function of this lattice gas is 

nl=O,  1 m t  A m  j m  I I  J A L  A 

where the second and the third products are taken over nearest neigh- 
boring sites, and the last product is over all triangular faces. The pressure 
of this lattice gas is 

kT 
p = f i n  Z(z, J, J', J3) (2) 

N 

where N is the total number of sites and the fugacity z is to be eliminated 
by fixing the density at 

P 

d' d d' 

Fig. 1. The 3-12 lattice. 
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2. EQUIVALENCE WITH AN EIGHT-VERTEX MODEL 

Our  analysis is based on a decorat ion transformation,  which maps the 
3-12 lattice gas into one on the honeycomb lattice with pure two-site inter- 
actions. Our  first step is to relate the lattice gas in (1) to an eight-vertex 
model on the underlying honeycomb lattice. First, to each J '  interaction we 
introduce a decorat ing site as shown in Fig. 2. Writing the equivalence of 
Bol tzmann factors 

Z nl + n2eJ'nln2 ~ F 

n = 0 , 1  

where y is the fugacity of the decorat ing site, 
occupat ion numbers  of the end sites, we obtain 

e R = z(1 - zu)/(1 - z) 

y = (1 - z ) ~ / z ~ ( ~  ' -  1) 

F =  z2(u ' - 1)/(1 - 2z + z2u) 

where here, and in (8) below, we introduce the notat ion 

u = e J, u '  = e J', ~) ~ C J3 

yneRn(nl + n2) (4) 

and n l , n 2 = 0 , 1  are the 

(5) 

(6) 

The introduct ion of the decorating sites permits us to group the 
Bol tzmann factor in (1) by elementary triangles. Thus, we can write 

•(z, J, J ' ,  J3) = FN/2 ~ 1-I O(tll, n2, n3) (7) 
nt = O, 1 A 

where the product  is taken over all triangles, and 

co(n 1, n2, n 3 ) = Y (hI + n2 + n3)/2 [ 1 + e Rn~ + e Rn2 + e Rn3 + ue R(n~ + ~2) 

bieR(n2 + n3) _~_ u c R ( n 3  + n2) -I- U31)C R(nl + n2 + n3)']  (8) 

is the Bol tzmann factor of a unit cell shown in Fig. 3. N o w  the Bol tzmann 
factor (8) can be regarded as the vertex weights of an eight-vertex model on 
the underlying honeycomb lattice (4'5~ with vertex weights 

Z 

Fig. 2. 

J' R R 

z y 

The introduction of a decorating site with fugacity y to the J '  interaction. 
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a = co(O, O, O) = 4 + 3u + u3v 

b = co(l, 0, 0) = ~ [-3 + u + (1 + 2u +/,/3/)) eR] 

c = co(l, 1, 0) = y [ 2  + 2(1 + u) e R + u(1 + u2v) e 2R] 

d =  co(l, 1, 1) = y 3 / 2 [ 1  -+- 3e R + 3ue 2R + u3ve 3R ] 

This leads to the identity 

S(Z, Jr, J ' ,  J3) = FN/ZZsv( a, b, c, d) 

where Zsv(a, b, c, d) is the eight-vertex model  part i t ion function. 

(9) 

(lo) 

3. E Q U I V A L E N C E  W I T H  A N  IS ING M O D E L  

It has been established (4"5) that the eight-vertex model part i t ion func- 
tion Zsv(a, b, c, d) is further equivalent to that of an Ising model  on the 
honeycomb lattice with reduced nearest-neighbor interactions K and an 
external field L. For  completeness, we quote here all relevant expressions 
for this equivalence as needed in our calculations: 

gt )U/3 
Zsv(a, b, c, d) = 2 cosh L (cosh .~ ~!  N/2 ~7HCising~(g'.~, L) (11) 

1/2 

yl/2 y~/2 

Fig. 3. A unit cell of the decorated 3-12 lattice. 
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where Z nc  ising(K, L) is 

f i=  

Yo = 

e 4 K  

tanh L = 

U =  

V =  

A =  

C =  

the Ising part i t ion function, and 

1~2"13/2 (a + 3byo + 3cy 2 + dy3)/(1 + Jo, 

(6  - A - C ) / B  

[ 6 / ( A  - C)]  2 

vV -(A-C)]'J2 
j (12) 

( b + d )  y o + a + c  

(a + c) Yo-- ( b + d )  

c 2 - bd, B = a d -  bc 

a c - b  2, 5 =  [ ( A -  C) 2 + B  2+4AC]1 /2  

Using (9) and (5) and after some algebra, we obtain the following explicit 
expressions: 

C - A = t 3 ( u 3 u ' v z  2 - -  M2MtZ 2 "~ 1/3VZ - -  UZ  -'~ U - -  1 )/z4(u ' - -  1 )2  

B 2 + 4AC = t6uz(u4v 2 - 6uzv + 4uv + 4 u -  3)/z6(u ' - 1 )3 (13) 

t = u'z 2 - 2z + 1 

The substition of (11) into (10) and (2) now yields 

k---T=? 2 ~  + ~ l n  c o ~  + 3  f H c ( K ' L )  (14) 

where fHc(K,  L)  is the per-site "free energy" of the honeycomb Ising model. 
Here the factor 1/3 in the last term of (14) takes into account  that the 
honeycomb lattice has N/3 lattice point. 

We shall need to locate the locus L = 0 in the ensuing discussions. 
F rom the expressions of K and L in (12), we see that L = 0 must  occur at 
V =  0. Using (9) and (5) we find 3 after some reduction both V and U con- 
taining a factor t 2. As a result, L - - 0  must  occur at the locus obtained by 
setting the remaining factor in V aqual to zero. After some lengthy algebra, 
this leads to 4 

3in addition, we also find B ~ t  2 , a + c ~ t , b + d ~ t , ( a + c ) ( A + C ) + ( b + d ) B ~ t  4,(b+d) 
(A+C)- - (a+c)B~t  4. 

4 If (31) of ref. 7 for L=0  is used in place of V/U=O, one finds (as a result of the quoted t 
dependences) the spurious solution t 6 =  0, in addition to (15). 
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b /6b / ' 3 / ) ( / / 3U 2 - -  3UV + 2) Z 6 "~ 6 b / 4 b / ' 2 ( U 3 U 2  - -  /,/2/) 2 - -  L/U + i )  Z 5 

+ 3U3U'(uZu 'v  - -  2uu'v + 4u2v - 8uv + u' + 4) Z 4 

+ 4u3( --3U'V -- 2V + 3U' + 2) z 3 

+ 3u( -u2u'v  - 4u2v + 2uu' - u' + 8 u -  4) Z 2 

+ 6 ( - u 3 v + u 2  + u - 1 ) z  

- - ( u 3 v - - 3 u + 2 ) = O  ( L = 0 )  (15) 

4. T W O - P H A S E  REGION A N D  COEXISTENT 
CURVE DIAMETER 

The equation of state of the lattica gas (1) is now given by (14) with 
the fugacity z contained therein eliminated by using (3). However, the 
Ising free energy fHc(K, L) is known (6) only for L = 0, which lies on the 
boundary of the two-phase region. Explicitly, this boundary is given by 

--=-lnkT 3 + ~ l n  c o ~  + ~ f n c ( K ,  0) (16) 

at the two densities 

Here, 

z( L) 
p+_=pa+~ ~z Io(K) (17) 

12 fHc(K, 0) = ~-~ d O l n [ o ~ + ( c d - 2 c o s O - 2 )  1/2 ] 

1 
+ ~ ln(2e + 2 cos 0) (18) 

where c~ = - cos 0 + (1 + cosh 3 2K)/sinh 2 2K, 

Od=Z~z l n ~ + ~ l n F  + z  - ~ t a n h K + ~ - ~ f H c ( , 0 )  (19) 

is the coexistence-curve diameter, and 

/ 16x3( l+x  3) ,~1/8 
Io(K) = ~1 (1~-~-(~---~-2)3j (20) 

where x = e  2~: is the spontaneous magnetization (7) of the honeycomb 
Ising lattice. In both (16) and (17), the fugacity z is to be determined from 
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(15). The critical regime of the lattice gas now corresponds to the regime 
K>Kc or e 2 K > e 2 ~ " = 2 + ~ ,  where Kc is the critical point of the 
honeycomb Ising model satisfying Io(Kc)= O. 

The procedure of computing the boundary of the two-phase region is 
as follows: For fixed J, J', J3, we solve z from (15). Then, the substitution 
of this z into (16) and (17) yields two points {p,p+} on the phase 
boundary. We have carried out this calculation for J = J ' .  The result is 
shown in Fig. 4. Numerically, we have found that the critical regime occurs 
only when J3>0 ,  J > 0 ,  and J ' > 0 .  For J3>0 ,  J < 0 ,  and J ' < 0 ,  for 
example, it can be readily seen from (12) and (13) that we have always 
K < 0. Our numerical finding is consistent with the fact that K < Kc if any 
of J, J', J3 becomes negative. 

The expression (19) gives rise to an exact expression of the coexistence 
curve diameter Pal. According to the law of rectilinear diameter, (8) Pd 
increases from its critical value Pc linearly as the temperature decreases 
from the critical temperature T c. However, Goldstein et al. (2) presented 
experimental evidence in real gases of an anomalous behavior of 
( T c - T )  1-=, where ~ is the specific heat exponent, and argued that this 
anomalous behavior can be explained by the existence of three-site inter- 
actions. In the present case the exact critical behavior of Pd of the lattice 
gas (1) can be examined. The rhs of (19) contains four terms; the first 
three of which are analytic functions in T, which, indeed, gives rise to the 
rectilinear critical behavior. The last term in (19), however, possesses a 
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Fig. 4. The exact boundary of the two-phase region of the lattice gas (1) ( J=  J'). 
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critical behavior ( T o - T )  1-~' with an amplitude proportional to ~K/~?z, 

which after some algebra becomes 

U4~) 2 - -  6u21) + 4uv + 4U -- 3 
0__K= u2(1 _ u ' ) [u2u ' (uv  - 1) z 2 - (u - 1 )] (21) 
oz P 

where P is a polynomial in u, u', v, and z whose explicit form does not 
affect us and therefore is not given. In the most general case ~K/Oz given 
by (21) does not vanish when substituted with the value of z solved from 
(15), and hence the critical behavior of Pd is ( T ~ - T )  1 ~', as observed 
experimentally. When Js = 0 ( v =  1), we find (15) factorized into 

(b/21XtZ 2 - -  1 )(u - 1 )2 [ ' U 4 U ' 2 ( U  .q_ 2) z 4 -~ 6U2U'(U q- 1 ) z 3 

+ u ( u R u ' + 2 u u ' + 3 u ' + 1 2 ) z 2 + 6 ( l + u ) z + u + 2 ] = O  (22) 

for which the only solution is z = 1/u x/-~.  At this value of z the factor 
inside the square brackets in (21), hence ~gKfi?z, vanishes identically (using 
v = 1). As a result, the anomalous critical behavior ( T c -  T) ~-~' is absent. 
Thus, we have established that, for the lattica gas (1), the observed 
anomalous critical behavior ( T o - T )  ~-~' is present if, and only if, the 
three-site interaction J3 is present. 

It should be noted that for two-dimensional models the anomalous 
critical behavior is, in fact, (To - T) In I Tc - TI. However, our main conclu- 
sion on the relevance of the anomaly of the critical behavior with the 
presence of three-site interactions is also valid in three dimensions. In three 
dimensions one considers an "extended" hyper-Kagom6 lattice derived by 
decorating a three-coordinated hydrogen peroxide lattice, ~ much in the 
same fashion as the 3-12 lattice is derived from the honeycomb lattice. 
Again, using the consideration of an eight-vertex model, one establishes 
our main conclusion for a lattice gas with three-site interactions on the 
extended hyper-Kagom6 lattice. In this case the anomalous critical 
behavior is (T c -  T) 1- ~', where ~' is the specific heat exponent of the three- 
dimensional Ising model. 

Finally, we remark that the method of an effective decimation of three- 
site interactions such as that employed here has proven to be an extremely 
useful tool, and has very recently been used to establish the existence of an 
asymmetry in the two-phase coexistence surface of a ternary solution of 
molecules with three-body interactions/w) 
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